1 Scope of the Report
1.1 Market Introduction
1.2 Years Considered
1.3 Research Objectives
1.4 Market Research Methodology
1.5 Research Process and Data Source
1.6 Economic Indicators
1.7 Currency Considered
1.8 Market Estimation Caveats
2 Executive Summary
2.1 World Market Overview
2.1.1 Global Electron-beam Additive Manufacturing 3D Printer Annual Sales 2018-2029
2.1.2 World Current & Future Analysis for Electron-beam Additive Manufacturing 3D Printer by Geographic Region, 2018, 2022 & 2029
2.1.3 World Current & Future Analysis for Electron-beam Additive Manufacturing 3D Printer by Country/Region, 2018, 2022 & 2029
2.2 Electron-beam Additive Manufacturing 3D Printer Segment by Type
2.2.1 Titanium
2.2.2 Aluminium
2.3 Electron-beam Additive Manufacturing 3D Printer Sales by Type
2.3.1 Global Electron-beam Additive Manufacturing 3D Printer Sales Market Share by Type (2018-2023)
2.3.2 Global Electron-beam Additive Manufacturing 3D Printer Revenue and Market Share by Type (2018-2023)
2.3.3 Global Electron-beam Additive Manufacturing 3D Printer Sale Price by Type (2018-2023)
2.4 Electron-beam Additive Manufacturing 3D Printer Segment by Application
2.4.1 Medical
2.4.2 Aerospace
2.4.3 Industrial
2.4.4 Others
2.5 Electron-beam Additive Manufacturing 3D Printer Sales by Application
2.5.1 Global Electron-beam Additive Manufacturing 3D Printer Sale Market Share by Application (2018-2023)
2.5.2 Global Electron-beam Additive Manufacturing 3D Printer Revenue and Market Share by Application (2018-2023)
2.5.3 Global Electron-beam Additive Manufacturing 3D Printer Sale Price by Application (2018-2023)
3 Global Electron-beam Additive Manufacturing 3D Printer by Company
3.1 Global Electron-beam Additive Manufacturing 3D Printer Breakdown Data by Company
3.1.1 Global Electron-beam Additive Manufacturing 3D Printer Annual Sales by Company (2018-2023)
3.1.2 Global Electron-beam Additive Manufacturing 3D Printer Sales Market Share by Company (2018-2023)
3.2 Global Electron-beam Additive Manufacturing 3D Printer Annual Revenue by Company (2018-2023)
3.2.1 Global Electron-beam Additive Manufacturing 3D Printer Revenue by Company (2018-2023)
3.2.2 Global Electron-beam Additive Manufacturing 3D Printer Revenue Market Share by Company (2018-2023)
3.3 Global Electron-beam Additive Manufacturing 3D Printer Sale Price by Company
3.4 Key Manufacturers Electron-beam Additive Manufacturing 3D Printer Producing Area Distribution, Sales Area, Product Type
3.4.1 Key Manufacturers Electron-beam Additive Manufacturing 3D Printer Product Location Distribution
3.4.2 Players Electron-beam Additive Manufacturing 3D Printer Products Offered
3.5 Market Concentration Rate Analysis
3.5.1 Competition Landscape Analysis
3.5.2 Concentration Ratio (CR3, CR5 and CR10) & (2018-2023)
3.6 New Products and Potential Entrants
3.7 Mergers & Acquisitions, Expansion
4 World Historic Review for Electron-beam Additive Manufacturing 3D Printer by Geographic Region
4.1 World Historic Electron-beam Additive Manufacturing 3D Printer Market Size by Geographic Region (2018-2023)
4.1.1 Global Electron-beam Additive Manufacturing 3D Printer Annual Sales by Geographic Region (2018-2023)
4.1.2 Global Electron-beam Additive Manufacturing 3D Printer Annual Revenue by Geographic Region (2018-2023)
4.2 World Historic Electron-beam Additive Manufacturing 3D Printer Market Size by Country/Region (2018-2023)
4.2.1 Global Electron-beam Additive Manufacturing 3D Printer Annual Sales by Country/Region (2018-2023)
4.2.2 Global Electron-beam Additive Manufacturing 3D Printer Annual Revenue by Country/Region (2018-2023)
4.3 Americas Electron-beam Additive Manufacturing 3D Printer Sales Growth
4.4 APAC Electron-beam Additive Manufacturing 3D Printer Sales Growth
4.5 Europe Electron-beam Additive Manufacturing 3D Printer Sales Growth
4.6 Middle East & Africa Electron-beam Additive Manufacturing 3D Printer Sales Growth
5 Americas
5.1 Americas Electron-beam Additive Manufacturing 3D Printer Sales by Country
5.1.1 Americas Electron-beam Additive Manufacturing 3D Printer Sales by Country (2018-2023)
5.1.2 Americas Electron-beam Additive Manufacturing 3D Printer Revenue by Country (2018-2023)
5.2 Americas Electron-beam Additive Manufacturing 3D Printer Sales by Type
5.3 Americas Electron-beam Additive Manufacturing 3D Printer Sales by Application
5.4 United States
5.5 Canada
5.6 Mexico
5.7 Brazil
6 APAC
6.1 APAC Electron-beam Additive Manufacturing 3D Printer Sales by Region
6.1.1 APAC Electron-beam Additive Manufacturing 3D Printer Sales by Region (2018-2023)
6.1.2 APAC Electron-beam Additive Manufacturing 3D Printer Revenue by Region (2018-2023)
6.2 APAC Electron-beam Additive Manufacturing 3D Printer Sales by Type
6.3 APAC Electron-beam Additive Manufacturing 3D Printer Sales by Application
6.4 China
6.5 Japan
6.6 South Korea
6.7 Southeast Asia
6.8 India
6.9 Australia
6.10 China Taiwan
7 Europe
7.1 Europe Electron-beam Additive Manufacturing 3D Printer by Country
7.1.1 Europe Electron-beam Additive Manufacturing 3D Printer Sales by Country (2018-2023)
7.1.2 Europe Electron-beam Additive Manufacturing 3D Printer Revenue by Country (2018-2023)
7.2 Europe Electron-beam Additive Manufacturing 3D Printer Sales by Type
7.3 Europe Electron-beam Additive Manufacturing 3D Printer Sales by Application
7.4 Germany
7.5 France
7.6 UK
7.7 Italy
7.8 Russia
8 Middle East & Africa
8.1 Middle East & Africa Electron-beam Additive Manufacturing 3D Printer by Country
8.1.1 Middle East & Africa Electron-beam Additive Manufacturing 3D Printer Sales by Country (2018-2023)
8.1.2 Middle East & Africa Electron-beam Additive Manufacturing 3D Printer Revenue by Country (2018-2023)
8.2 Middle East & Africa Electron-beam Additive Manufacturing 3D Printer Sales by Type
8.3 Middle East & Africa Electron-beam Additive Manufacturing 3D Printer Sales by Application
8.4 Egypt
8.5 South Africa
8.6 Israel
8.7 Turkey
8.8 GCC Countries
9 Market Drivers, Challenges and Trends
9.1 Market Drivers & Growth Opportunities
9.2 Market Challenges & Risks
9.3 Industry Trends
10 Manufacturing Cost Structure Analysis
10.1 Raw Material and Suppliers
10.2 Manufacturing Cost Structure Analysis of Electron-beam Additive Manufacturing 3D Printer
10.3 Manufacturing Process Analysis of Electron-beam Additive Manufacturing 3D Printer
10.4 Industry Chain Structure of Electron-beam Additive Manufacturing 3D Printer
11 Marketing, Distributors and Customer
11.1 Sales Channel
11.1.1 Direct Channels
11.1.2 Indirect Channels
11.2 Electron-beam Additive Manufacturing 3D Printer Distributors
11.3 Electron-beam Additive Manufacturing 3D Printer Customer
12 World Forecast Review for Electron-beam Additive Manufacturing 3D Printer by Geographic Region
12.1 Global Electron-beam Additive Manufacturing 3D Printer Market Size Forecast by Region
12.1.1 Global Electron-beam Additive Manufacturing 3D Printer Forecast by Region (2024-2029)
12.1.2 Global Electron-beam Additive Manufacturing 3D Printer Annual Revenue Forecast by Region (2024-2029)
12.2 Americas Forecast by Country
12.3 APAC Forecast by Region
12.4 Europe Forecast by Country
12.5 Middle East & Africa Forecast by Country
12.6 Global Electron-beam Additive Manufacturing 3D Printer Forecast by Type
12.7 Global Electron-beam Additive Manufacturing 3D Printer Forecast by Application
13 Key Players Analysis
13.1 Arcam (GE Additive)
13.1.1 Arcam (GE Additive) Company Information
13.1.2 Arcam (GE Additive) Electron-beam Additive Manufacturing 3D Printer Product Portfolios and Specifications
13.1.3 Arcam (GE Additive) Electron-beam Additive Manufacturing 3D Printer Sales, Revenue, Price and Gross Margin (2018-2023)
13.1.4 Arcam (GE Additive) Main Business Overview
13.1.5 Arcam (GE Additive) Latest Developments
13.2 JEOL
13.2.1 JEOL Company Information
13.2.2 JEOL Electron-beam Additive Manufacturing 3D Printer Product Portfolios and Specifications
13.2.3 JEOL Electron-beam Additive Manufacturing 3D Printer Sales, Revenue, Price and Gross Margin (2018-2023)
13.2.4 JEOL Main Business Overview
13.2.5 JEOL Latest Developments
13.3 Wayland Additive
13.3.1 Wayland Additive Company Information
13.3.2 Wayland Additive Electron-beam Additive Manufacturing 3D Printer Product Portfolios and Specifications
13.3.3 Wayland Additive Electron-beam Additive Manufacturing 3D Printer Sales, Revenue, Price and Gross Margin (2018-2023)
13.3.4 Wayland Additive Main Business Overview
13.3.5 Wayland Additive Latest Developments
13.4 Freemelt
13.4.1 Freemelt Company Information
13.4.2 Freemelt Electron-beam Additive Manufacturing 3D Printer Product Portfolios and Specifications
13.4.3 Freemelt Electron-beam Additive Manufacturing 3D Printer Sales, Revenue, Price and Gross Margin (2018-2023)
13.4.4 Freemelt Main Business Overview
13.4.5 Freemelt Latest Developments
13.5 Q-Beam
13.5.1 Q-Beam Company Information
13.5.2 Q-Beam Electron-beam Additive Manufacturing 3D Printer Product Portfolios and Specifications
13.5.3 Q-Beam Electron-beam Additive Manufacturing 3D Printer Sales, Revenue, Price and Gross Margin (2018-2023)
13.5.4 Q-Beam Main Business Overview
13.5.5 Q-Beam Latest Developments
13.6 Mitsubishi Electric
13.6.1 Mitsubishi Electric Company Information
13.6.2 Mitsubishi Electric Electron-beam Additive Manufacturing 3D Printer Product Portfolios and Specifications
13.6.3 Mitsubishi Electric Electron-beam Additive Manufacturing 3D Printer Sales, Revenue, Price and Gross Margin (2018-2023)
13.6.4 Mitsubishi Electric Main Business Overview
13.6.5 Mitsubishi Electric Latest Developments
13.7 BEAMIT Group
13.7.1 BEAMIT Group Company Information
13.7.2 BEAMIT Group Electron-beam Additive Manufacturing 3D Printer Product Portfolios and Specifications
13.7.3 BEAMIT Group Electron-beam Additive Manufacturing 3D Printer Sales, Revenue, Price and Gross Margin (2018-2023)
13.7.4 BEAMIT Group Main Business Overview
13.7.5 BEAMIT Group Latest Developments
13.8 Hoganas
13.8.1 Hoganas Company Information
13.8.2 Hoganas Electron-beam Additive Manufacturing 3D Printer Product Portfolios and Specifications
13.8.3 Hoganas Electron-beam Additive Manufacturing 3D Printer Sales, Revenue, Price and Gross Margin (2018-2023)
13.8.4 Hoganas Main Business Overview
13.8.5 Hoganas Latest Developments
13.9 Xi’an Sailong Metal Materials
13.9.1 Xi’an Sailong Metal Materials Company Information
13.9.2 Xi’an Sailong Metal Materials Electron-beam Additive Manufacturing 3D Printer Product Portfolios and Specifications
13.9.3 Xi’an Sailong Metal Materials Electron-beam Additive Manufacturing 3D Printer Sales, Revenue, Price and Gross Margin (2018-2023)
13.9.4 Xi’an Sailong Metal Materials Main Business Overview
13.9.5 Xi’an Sailong Metal Materials Latest Developments
13.10 QBEAM
13.10.1 QBEAM Company Information
13.10.2 QBEAM Electron-beam Additive Manufacturing 3D Printer Product Portfolios and Specifications
13.10.3 QBEAM Electron-beam Additive Manufacturing 3D Printer Sales, Revenue, Price and Gross Margin (2018-2023)
13.10.4 QBEAM Main Business Overview
13.10.5 QBEAM Latest Developments
14 Research Findings and Conclusion
※参考情報 電子ビーム積層造形(Electron-beam Additive Manufacturing、EBAM)3Dプリンタは、金属部品の製造に特化した先進的な製造技術です。この技術は、電子ビームを利用して金属粉末を加熱し、溶融させて層ごとに部品を形成するプロセスです。以下に、EBAMの概念について詳しく説明いたします。 EBAMは、層ごとに材料を積み重ねていく加法製造の手法であり、特に高強度で複雑な形状を持つ金属部品の製造に優れています。この技術では、電子ビームが真空中で金属粉末に向けられ、焦点を合わせたビームが金属粉末を加熱して溶融させます。溶融した金属は、次の層の粉末と結合し、冷却されることで固体化します。このプロセスが繰り返されることにより、部品が積層されていきます。 EBAMの特徴の一つは、極めて高い精度と詳細な形状を持つ部品を製造できる点です。電子ビームは非常に集中した熱エネルギーを提供できるため、小さな範囲に焦点を合わせ、高い精度で溶融が行えます。これにより、複雑なジオメトリを持つ部品や、通常の加工方法では困難な形状を容易に実現することが可能です。また、EBAMは金属特有の特性を保持しながら、部品の強度や耐久性を高めることができます。 この技術のもう一つの利点は、使用する材料に対する柔軟性です。EBAMでは、さまざまな金属粉末を使用できるため、チタン、ステンレス鋼、アルミニウム、ニッケル合金など、幅広い材料に対応しています。これにより、特定の用途に最も適した材料を選択することができ、部品の機能性を向上させることが可能です。 EBAMの用途は非常に多岐にわたります。航空宇宙産業においては、エンジン部品や構造部品の製造に使用されることが多く、高温環境に耐えるための高強度材料が求められます。また、医療分野では、インプラントや外科用器具の製造にも利用されており、個別の患者に合わせたカスタマイズが可能になるため、より良い治療結果が期待できます。さらに、EBAMは自動車産業やエネルギー産業においても活用され、部品の軽量化や性能向上が図られています。 EBAMは、いくつかの関連技術と併用されることがあります。たとえば、レーザー積層造形(Laser Additive Manufacturing、LAM)との比較がよく行われます。両者は積層造形の手法として共通点がありますが、EBAMは電子ビームを使用するのに対し、LAMはレーザー光を使用します。この違いにより、それぞれの技術には特有の利点と欠点がありますが、EBAMは高い造形速度と厚い材料層の製造が可能なため、大型部品の生産に向いていると言えます。 この技術の進展により、製造業界は革新を続けています。EBAMの研究開発は進行中であり、プロセスの最適化や新たな材料の探索が行われています。また、デジタル化の進展に伴い、CADソフトウェアとの連携や、シミュレーションツールを使用したプロセスの最適化も重要視されています。これにより、設計から製造までの一連の流れがスムーズに行えるようになり、効率的な生産が実現されています。 EBAM技術は、持続可能な製造方法としても注目されています。従来の削減加工方法に比べ、原材料の使用効率が高く、廃棄物の削減が図れることから、環境への負担を軽減することができます。さらに、再生可能素材やリサイクル材料を使用することも可能で、環境意識の高い企業にとっては重要な要素となっています。 最後に、EBAMはその特性から、製造業だけでなく、研究開発の分野でも利用が進んでいます。新しい材料の特性や構造を検討するための試作品として、EBAMを用いて製作された部品が多く使用され、様々な分野での研究成果が期待されています。このように、EBAM技術は未来の製造業において重要な役割を果たしていくことでしょう。 |
*** 免責事項 ***
https://www.globalresearch.co.jp/disclaimer/