1 Scope of the Report
1.1 Market Introduction
1.2 Years Considered
1.3 Research Objectives
1.4 Market Research Methodology
1.5 Research Process and Data Source
1.6 Economic Indicators
1.7 Currency Considered
1.8 Market Estimation Caveats
2 Executive Summary
2.1 World Market Overview
2.1.1 Global Fluid Viscous Dampers for Buildings and Bridges Annual Sales 2018-2029
2.1.2 World Current & Future Analysis for Fluid Viscous Dampers for Buildings and Bridges by Geographic Region, 2018, 2022 & 2029
2.1.3 World Current & Future Analysis for Fluid Viscous Dampers for Buildings and Bridges by Country/Region, 2018, 2022 & 2029
2.2 Fluid Viscous Dampers for Buildings and Bridges Segment by Type
2.2.1 Single Rod Type
2.2.2 Double Rod Type
2.2.3 Hydraulic Cylinder Gap-type
2.3 Fluid Viscous Dampers for Buildings and Bridges Sales by Type
2.3.1 Global Fluid Viscous Dampers for Buildings and Bridges Sales Market Share by Type (2018-2023)
2.3.2 Global Fluid Viscous Dampers for Buildings and Bridges Revenue and Market Share by Type (2018-2023)
2.3.3 Global Fluid Viscous Dampers for Buildings and Bridges Sale Price by Type (2018-2023)
2.4 Fluid Viscous Dampers for Buildings and Bridges Segment by Application
2.4.1 Building
2.4.2 Bridge
2.5 Fluid Viscous Dampers for Buildings and Bridges Sales by Application
2.5.1 Global Fluid Viscous Dampers for Buildings and Bridges Sale Market Share by Application (2018-2023)
2.5.2 Global Fluid Viscous Dampers for Buildings and Bridges Revenue and Market Share by Application (2018-2023)
2.5.3 Global Fluid Viscous Dampers for Buildings and Bridges Sale Price by Application (2018-2023)
3 Global Fluid Viscous Dampers for Buildings and Bridges by Company
3.1 Global Fluid Viscous Dampers for Buildings and Bridges Breakdown Data by Company
3.1.1 Global Fluid Viscous Dampers for Buildings and Bridges Annual Sales by Company (2018-2023)
3.1.2 Global Fluid Viscous Dampers for Buildings and Bridges Sales Market Share by Company (2018-2023)
3.2 Global Fluid Viscous Dampers for Buildings and Bridges Annual Revenue by Company (2018-2023)
3.2.1 Global Fluid Viscous Dampers for Buildings and Bridges Revenue by Company (2018-2023)
3.2.2 Global Fluid Viscous Dampers for Buildings and Bridges Revenue Market Share by Company (2018-2023)
3.3 Global Fluid Viscous Dampers for Buildings and Bridges Sale Price by Company
3.4 Key Manufacturers Fluid Viscous Dampers for Buildings and Bridges Producing Area Distribution, Sales Area, Product Type
3.4.1 Key Manufacturers Fluid Viscous Dampers for Buildings and Bridges Product Location Distribution
3.4.2 Players Fluid Viscous Dampers for Buildings and Bridges Products Offered
3.5 Market Concentration Rate Analysis
3.5.1 Competition Landscape Analysis
3.5.2 Concentration Ratio (CR3, CR5 and CR10) & (2018-2023)
3.6 New Products and Potential Entrants
3.7 Mergers & Acquisitions, Expansion
4 World Historic Review for Fluid Viscous Dampers for Buildings and Bridges by Geographic Region
4.1 World Historic Fluid Viscous Dampers for Buildings and Bridges Market Size by Geographic Region (2018-2023)
4.1.1 Global Fluid Viscous Dampers for Buildings and Bridges Annual Sales by Geographic Region (2018-2023)
4.1.2 Global Fluid Viscous Dampers for Buildings and Bridges Annual Revenue by Geographic Region (2018-2023)
4.2 World Historic Fluid Viscous Dampers for Buildings and Bridges Market Size by Country/Region (2018-2023)
4.2.1 Global Fluid Viscous Dampers for Buildings and Bridges Annual Sales by Country/Region (2018-2023)
4.2.2 Global Fluid Viscous Dampers for Buildings and Bridges Annual Revenue by Country/Region (2018-2023)
4.3 Americas Fluid Viscous Dampers for Buildings and Bridges Sales Growth
4.4 APAC Fluid Viscous Dampers for Buildings and Bridges Sales Growth
4.5 Europe Fluid Viscous Dampers for Buildings and Bridges Sales Growth
4.6 Middle East & Africa Fluid Viscous Dampers for Buildings and Bridges Sales Growth
5 Americas
5.1 Americas Fluid Viscous Dampers for Buildings and Bridges Sales by Country
5.1.1 Americas Fluid Viscous Dampers for Buildings and Bridges Sales by Country (2018-2023)
5.1.2 Americas Fluid Viscous Dampers for Buildings and Bridges Revenue by Country (2018-2023)
5.2 Americas Fluid Viscous Dampers for Buildings and Bridges Sales by Type
5.3 Americas Fluid Viscous Dampers for Buildings and Bridges Sales by Application
5.4 United States
5.5 Canada
5.6 Mexico
5.7 Brazil
6 APAC
6.1 APAC Fluid Viscous Dampers for Buildings and Bridges Sales by Region
6.1.1 APAC Fluid Viscous Dampers for Buildings and Bridges Sales by Region (2018-2023)
6.1.2 APAC Fluid Viscous Dampers for Buildings and Bridges Revenue by Region (2018-2023)
6.2 APAC Fluid Viscous Dampers for Buildings and Bridges Sales by Type
6.3 APAC Fluid Viscous Dampers for Buildings and Bridges Sales by Application
6.4 China
6.5 Japan
6.6 South Korea
6.7 Southeast Asia
6.8 India
6.9 Australia
6.10 China Taiwan
7 Europe
7.1 Europe Fluid Viscous Dampers for Buildings and Bridges by Country
7.1.1 Europe Fluid Viscous Dampers for Buildings and Bridges Sales by Country (2018-2023)
7.1.2 Europe Fluid Viscous Dampers for Buildings and Bridges Revenue by Country (2018-2023)
7.2 Europe Fluid Viscous Dampers for Buildings and Bridges Sales by Type
7.3 Europe Fluid Viscous Dampers for Buildings and Bridges Sales by Application
7.4 Germany
7.5 France
7.6 UK
7.7 Italy
7.8 Russia
8 Middle East & Africa
8.1 Middle East & Africa Fluid Viscous Dampers for Buildings and Bridges by Country
8.1.1 Middle East & Africa Fluid Viscous Dampers for Buildings and Bridges Sales by Country (2018-2023)
8.1.2 Middle East & Africa Fluid Viscous Dampers for Buildings and Bridges Revenue by Country (2018-2023)
8.2 Middle East & Africa Fluid Viscous Dampers for Buildings and Bridges Sales by Type
8.3 Middle East & Africa Fluid Viscous Dampers for Buildings and Bridges Sales by Application
8.4 Egypt
8.5 South Africa
8.6 Israel
8.7 Turkey
8.8 GCC Countries
9 Market Drivers, Challenges and Trends
9.1 Market Drivers & Growth Opportunities
9.2 Market Challenges & Risks
9.3 Industry Trends
10 Manufacturing Cost Structure Analysis
10.1 Raw Material and Suppliers
10.2 Manufacturing Cost Structure Analysis of Fluid Viscous Dampers for Buildings and Bridges
10.3 Manufacturing Process Analysis of Fluid Viscous Dampers for Buildings and Bridges
10.4 Industry Chain Structure of Fluid Viscous Dampers for Buildings and Bridges
11 Marketing, Distributors and Customer
11.1 Sales Channel
11.1.1 Direct Channels
11.1.2 Indirect Channels
11.2 Fluid Viscous Dampers for Buildings and Bridges Distributors
11.3 Fluid Viscous Dampers for Buildings and Bridges Customer
12 World Forecast Review for Fluid Viscous Dampers for Buildings and Bridges by Geographic Region
12.1 Global Fluid Viscous Dampers for Buildings and Bridges Market Size Forecast by Region
12.1.1 Global Fluid Viscous Dampers for Buildings and Bridges Forecast by Region (2024-2029)
12.1.2 Global Fluid Viscous Dampers for Buildings and Bridges Annual Revenue Forecast by Region (2024-2029)
12.2 Americas Forecast by Country
12.3 APAC Forecast by Region
12.4 Europe Forecast by Country
12.5 Middle East & Africa Forecast by Country
12.6 Global Fluid Viscous Dampers for Buildings and Bridges Forecast by Type
12.7 Global Fluid Viscous Dampers for Buildings and Bridges Forecast by Application
13 Key Players Analysis
13.1 Taylor Devices
13.1.1 Taylor Devices Company Information
13.1.2 Taylor Devices Fluid Viscous Dampers for Buildings and Bridges Product Portfolios and Specifications
13.1.3 Taylor Devices Fluid Viscous Dampers for Buildings and Bridges Sales, Revenue, Price and Gross Margin (2018-2023)
13.1.4 Taylor Devices Main Business Overview
13.1.5 Taylor Devices Latest Developments
13.2 ITT
13.2.1 ITT Company Information
13.2.2 ITT Fluid Viscous Dampers for Buildings and Bridges Product Portfolios and Specifications
13.2.3 ITT Fluid Viscous Dampers for Buildings and Bridges Sales, Revenue, Price and Gross Margin (2018-2023)
13.2.4 ITT Main Business Overview
13.2.5 ITT Latest Developments
13.3 Jiangsu ROAD Damping Technology
13.3.1 Jiangsu ROAD Damping Technology Company Information
13.3.2 Jiangsu ROAD Damping Technology Fluid Viscous Dampers for Buildings and Bridges Product Portfolios and Specifications
13.3.3 Jiangsu ROAD Damping Technology Fluid Viscous Dampers for Buildings and Bridges Sales, Revenue, Price and Gross Margin (2018-2023)
13.3.4 Jiangsu ROAD Damping Technology Main Business Overview
13.3.5 Jiangsu ROAD Damping Technology Latest Developments
13.4 CECO
13.4.1 CECO Company Information
13.4.2 CECO Fluid Viscous Dampers for Buildings and Bridges Product Portfolios and Specifications
13.4.3 CECO Fluid Viscous Dampers for Buildings and Bridges Sales, Revenue, Price and Gross Margin (2018-2023)
13.4.4 CECO Main Business Overview
13.4.5 CECO Latest Developments
13.5 Pipe Supports Ltd
13.5.1 Pipe Supports Ltd Company Information
13.5.2 Pipe Supports Ltd Fluid Viscous Dampers for Buildings and Bridges Product Portfolios and Specifications
13.5.3 Pipe Supports Ltd Fluid Viscous Dampers for Buildings and Bridges Sales, Revenue, Price and Gross Margin (2018-2023)
13.5.4 Pipe Supports Ltd Main Business Overview
13.5.5 Pipe Supports Ltd Latest Developments
14 Research Findings and Conclusion
※参考情報 建物や橋梁の耐震性能を向上させるために重要な役割を果たす流体粘性ダンパーについて、その概念や特性、種類、用途、関連技術などを詳しく説明いたします。 流体粘性ダンパーとは、外部からの振動や衝撃に対して、建物や橋梁の構造物にかかる負荷を軽減するために用いる装置です。このダンパーは、主に流体(通常は油)を利用した粘性抵抗によって振動を吸収し、エネルギーを散逸させます。流体粘性ダンパーは、地震や強風などの外力に対して構造物の応答を抑えることができるため、最近では多くの建築物やインフラに採用されています。 流体粘性ダンパーの最大の特長は、非常に高いエネルギー吸収能力を持つことです。粘性による抵抗力が発生するため、従来の層間変位型ダンパーとは異なり、速度に依存した応答特性を有しています。このため、流体粘性ダンパーは、振動の周波数や振幅に合わせて動作することができ、広範な地震波に対して効果的です。さらに、これらのダンパーは機械的な部品が少ないため、メンテナンスが容易であり、長寿命の特性を持っています。 流体粘性ダンパーには、いくつかの種類があります。一つは、単純なダンパーで、基本的な構造を持ち、低コストで導入しやすいものです。もう一つは、可変粘性ダンパーと呼ばれるもので、流体の特性を変えることによって、ダンパーの特性を調整することが可能です。この可変性により、さまざまな条件に応じた最適な振動抑制が実現できます。さらに、流体粘性ダンパーは、他の補強技術と組み合わせて使用されることもあり、たとえば、弾性材料と併用することで、さらなる効果を発揮することができます。 流体粘性ダンパーの用途は非常に多岐にわたります。主に高層ビルや橋梁などの大規模構造物に使用されますが、最近では小規模な建築物や独立した構造物にも応用されるようになっています。特に、地震多発地域では、流体粘性ダンパーを使用することで、建物や橋梁の安全性を確保することが求められています。また、ダンパーは風荷重に対する耐性向上のためにも利用されており、特に高層ビルでは風による揺れを軽減するために重要な役割を果たします。 さらに、流体粘性ダンパーは適用分野が広く、交通インフラや公共施設にも導入されています。交通インフラ、たとえば高速道路橋は、地震に対する耐性が非常に重要であり、流体粘性ダンパーを組み込むことで、震災時の被害を軽減し、安全性を向上させることができます。また、公共施設、教育機関や病院においても、地震による影響を最小限に抑えるために、ダンパーの設置が進められています。 流体粘性ダンパーの関連技術としては、免震技術や制振技術が挙げられます。免震技術は、建物の基礎部分にダンパーを設置することで、地震波の影響を受けにくくする方法です。一方、制振技術は、建物の上部にダンパーを取り付けて、振動の伝播を抑えるものです。これらの技術と流体粘性ダンパーを組み合わせることにより、さらなる耐震性が実現されることが期待されています。 流体粘性ダンパーの設計や解析には、コンピュータシミュレーション技術が非常に重要です。材料の特性や構造の設計に関しては、最新のCAE(Computer Aided Engineering)ツールを用いて、最適化された設計が行われます。これにより、実際の使用条件に合わせた性能が確保され、より安全で効率的なダンパーが開発されています。 今後、流体粘性ダンパーの技術はさらに進化し、より多様な適用が期待されます。気候変動や自然災害の増加に伴い、構造物の耐震性や耐風性はますます重要なテーマとなっています。これからの時代において、流体粘性ダンパーは地震や風による影響から建物や橋梁を守るための重要な装置として、その需要が高まるでしょう。技術の進歩により、新たな機能や性能の向上も進むことで、より安全な社会を実現するための一助となることでしょう。 |
*** 免責事項 ***
https://www.globalresearch.co.jp/disclaimer/