1 Scope of the Report
1.1 Market Introduction
1.2 Years Considered
1.3 Research Objectives
1.4 Market Research Methodology
1.5 Research Process and Data Source
1.6 Economic Indicators
1.7 Currency Considered
1.8 Market Estimation Caveats
2 Executive Summary
2.1 World Market Overview
2.1.1 Global High-Precision Optical Extensometer Annual Sales 2018-2029
2.1.2 World Current & Future Analysis for High-Precision Optical Extensometer by Geographic Region, 2018, 2022 & 2029
2.1.3 World Current & Future Analysis for High-Precision Optical Extensometer by Country/Region, 2018, 2022 & 2029
2.2 High-Precision Optical Extensometer Segment by Type
2.2.1 Laser Interferometry Extensometer
2.2.2 Digital Image Correlation (DIC) Extensometer
2.2.3 Moiré Interferometry Extensometer
2.2.4 Others
2.3 High-Precision Optical Extensometer Sales by Type
2.3.1 Global High-Precision Optical Extensometer Sales Market Share by Type (2018-2023)
2.3.2 Global High-Precision Optical Extensometer Revenue and Market Share by Type (2018-2023)
2.3.3 Global High-Precision Optical Extensometer Sale Price by Type (2018-2023)
2.4 High-Precision Optical Extensometer Segment by Application
2.4.1 Material Testing and Characterization
2.4.2 Structural Engineering and Civil Infrastructur
2.4.3 Aerospace and Automotive Industries
2.4.4 Biomechanics and Medical Research
2.4.5 Microelectronics and Semiconductor Industry
2.5 High-Precision Optical Extensometer Sales by Application
2.5.1 Global High-Precision Optical Extensometer Sale Market Share by Application (2018-2023)
2.5.2 Global High-Precision Optical Extensometer Revenue and Market Share by Application (2018-2023)
2.5.3 Global High-Precision Optical Extensometer Sale Price by Application (2018-2023)
3 Global High-Precision Optical Extensometer by Company
3.1 Global High-Precision Optical Extensometer Breakdown Data by Company
3.1.1 Global High-Precision Optical Extensometer Annual Sales by Company (2018-2023)
3.1.2 Global High-Precision Optical Extensometer Sales Market Share by Company (2018-2023)
3.2 Global High-Precision Optical Extensometer Annual Revenue by Company (2018-2023)
3.2.1 Global High-Precision Optical Extensometer Revenue by Company (2018-2023)
3.2.2 Global High-Precision Optical Extensometer Revenue Market Share by Company (2018-2023)
3.3 Global High-Precision Optical Extensometer Sale Price by Company
3.4 Key Manufacturers High-Precision Optical Extensometer Producing Area Distribution, Sales Area, Product Type
3.4.1 Key Manufacturers High-Precision Optical Extensometer Product Location Distribution
3.4.2 Players High-Precision Optical Extensometer Products Offered
3.5 Market Concentration Rate Analysis
3.5.1 Competition Landscape Analysis
3.5.2 Concentration Ratio (CR3, CR5 and CR10) & (2018-2023)
3.6 New Products and Potential Entrants
3.7 Mergers & Acquisitions, Expansion
4 World Historic Review for High-Precision Optical Extensometer by Geographic Region
4.1 World Historic High-Precision Optical Extensometer Market Size by Geographic Region (2018-2023)
4.1.1 Global High-Precision Optical Extensometer Annual Sales by Geographic Region (2018-2023)
4.1.2 Global High-Precision Optical Extensometer Annual Revenue by Geographic Region (2018-2023)
4.2 World Historic High-Precision Optical Extensometer Market Size by Country/Region (2018-2023)
4.2.1 Global High-Precision Optical Extensometer Annual Sales by Country/Region (2018-2023)
4.2.2 Global High-Precision Optical Extensometer Annual Revenue by Country/Region (2018-2023)
4.3 Americas High-Precision Optical Extensometer Sales Growth
4.4 APAC High-Precision Optical Extensometer Sales Growth
4.5 Europe High-Precision Optical Extensometer Sales Growth
4.6 Middle East & Africa High-Precision Optical Extensometer Sales Growth
5 Americas
5.1 Americas High-Precision Optical Extensometer Sales by Country
5.1.1 Americas High-Precision Optical Extensometer Sales by Country (2018-2023)
5.1.2 Americas High-Precision Optical Extensometer Revenue by Country (2018-2023)
5.2 Americas High-Precision Optical Extensometer Sales by Type
5.3 Americas High-Precision Optical Extensometer Sales by Application
5.4 United States
5.5 Canada
5.6 Mexico
5.7 Brazil
6 APAC
6.1 APAC High-Precision Optical Extensometer Sales by Region
6.1.1 APAC High-Precision Optical Extensometer Sales by Region (2018-2023)
6.1.2 APAC High-Precision Optical Extensometer Revenue by Region (2018-2023)
6.2 APAC High-Precision Optical Extensometer Sales by Type
6.3 APAC High-Precision Optical Extensometer Sales by Application
6.4 China
6.5 Japan
6.6 South Korea
6.7 Southeast Asia
6.8 India
6.9 Australia
6.10 China Taiwan
7 Europe
7.1 Europe High-Precision Optical Extensometer by Country
7.1.1 Europe High-Precision Optical Extensometer Sales by Country (2018-2023)
7.1.2 Europe High-Precision Optical Extensometer Revenue by Country (2018-2023)
7.2 Europe High-Precision Optical Extensometer Sales by Type
7.3 Europe High-Precision Optical Extensometer Sales by Application
7.4 Germany
7.5 France
7.6 UK
7.7 Italy
7.8 Russia
8 Middle East & Africa
8.1 Middle East & Africa High-Precision Optical Extensometer by Country
8.1.1 Middle East & Africa High-Precision Optical Extensometer Sales by Country (2018-2023)
8.1.2 Middle East & Africa High-Precision Optical Extensometer Revenue by Country (2018-2023)
8.2 Middle East & Africa High-Precision Optical Extensometer Sales by Type
8.3 Middle East & Africa High-Precision Optical Extensometer Sales by Application
8.4 Egypt
8.5 South Africa
8.6 Israel
8.7 Turkey
8.8 GCC Countries
9 Market Drivers, Challenges and Trends
9.1 Market Drivers & Growth Opportunities
9.2 Market Challenges & Risks
9.3 Industry Trends
10 Manufacturing Cost Structure Analysis
10.1 Raw Material and Suppliers
10.2 Manufacturing Cost Structure Analysis of High-Precision Optical Extensometer
10.3 Manufacturing Process Analysis of High-Precision Optical Extensometer
10.4 Industry Chain Structure of High-Precision Optical Extensometer
11 Marketing, Distributors and Customer
11.1 Sales Channel
11.1.1 Direct Channels
11.1.2 Indirect Channels
11.2 High-Precision Optical Extensometer Distributors
11.3 High-Precision Optical Extensometer Customer
12 World Forecast Review for High-Precision Optical Extensometer by Geographic Region
12.1 Global High-Precision Optical Extensometer Market Size Forecast by Region
12.1.1 Global High-Precision Optical Extensometer Forecast by Region (2024-2029)
12.1.2 Global High-Precision Optical Extensometer Annual Revenue Forecast by Region (2024-2029)
12.2 Americas Forecast by Country
12.3 APAC Forecast by Region
12.4 Europe Forecast by Country
12.5 Middle East & Africa Forecast by Country
12.6 Global High-Precision Optical Extensometer Forecast by Type
12.7 Global High-Precision Optical Extensometer Forecast by Application
13 Key Players Analysis
13.1 Ametek
13.1.1 Ametek Company Information
13.1.2 Ametek High-Precision Optical Extensometer Product Portfolios and Specifications
13.1.3 Ametek High-Precision Optical Extensometer Sales, Revenue, Price and Gross Margin (2018-2023)
13.1.4 Ametek Main Business Overview
13.1.5 Ametek Latest Developments
13.2 Instron
13.2.1 Instron Company Information
13.2.2 Instron High-Precision Optical Extensometer Product Portfolios and Specifications
13.2.3 Instron High-Precision Optical Extensometer Sales, Revenue, Price and Gross Margin (2018-2023)
13.2.4 Instron Main Business Overview
13.2.5 Instron Latest Developments
13.3 Zwick Roell
13.3.1 Zwick Roell Company Information
13.3.2 Zwick Roell High-Precision Optical Extensometer Product Portfolios and Specifications
13.3.3 Zwick Roell High-Precision Optical Extensometer Sales, Revenue, Price and Gross Margin (2018-2023)
13.3.4 Zwick Roell Main Business Overview
13.3.5 Zwick Roell Latest Developments
13.4 Shimadzu
13.4.1 Shimadzu Company Information
13.4.2 Shimadzu High-Precision Optical Extensometer Product Portfolios and Specifications
13.4.3 Shimadzu High-Precision Optical Extensometer Sales, Revenue, Price and Gross Margin (2018-2023)
13.4.4 Shimadzu Main Business Overview
13.4.5 Shimadzu Latest Developments
13.5 MTS
13.5.1 MTS Company Information
13.5.2 MTS High-Precision Optical Extensometer Product Portfolios and Specifications
13.5.3 MTS High-Precision Optical Extensometer Sales, Revenue, Price and Gross Margin (2018-2023)
13.5.4 MTS Main Business Overview
13.5.5 MTS Latest Developments
13.6 Imetrum
13.6.1 Imetrum Company Information
13.6.2 Imetrum High-Precision Optical Extensometer Product Portfolios and Specifications
13.6.3 Imetrum High-Precision Optical Extensometer Sales, Revenue, Price and Gross Margin (2018-2023)
13.6.4 Imetrum Main Business Overview
13.6.5 Imetrum Latest Developments
13.7 Epsilon Tech
13.7.1 Epsilon Tech Company Information
13.7.2 Epsilon Tech High-Precision Optical Extensometer Product Portfolios and Specifications
13.7.3 Epsilon Tech High-Precision Optical Extensometer Sales, Revenue, Price and Gross Margin (2018-2023)
13.7.4 Epsilon Tech Main Business Overview
13.7.5 Epsilon Tech Latest Developments
13.8 BESMAK
13.8.1 BESMAK Company Information
13.8.2 BESMAK High-Precision Optical Extensometer Product Portfolios and Specifications
13.8.3 BESMAK High-Precision Optical Extensometer Sales, Revenue, Price and Gross Margin (2018-2023)
13.8.4 BESMAK Main Business Overview
13.8.5 BESMAK Latest Developments
14 Research Findings and Conclusion
※参考情報 高精度光学式伸び計は、材料の変形を高精度で測定するための重要な装置です。この装置は、主に材料試験において、その変形(伸びまたは収縮)をリアルタイムで捉えることができ、研究開発や品質管理などの分野で広く使用されています。以下において、この装置の概念や特徴、種類、用途、関連技術について詳細に述べます。 まず、高精度光学式伸び計の定義について考えてみましょう。この装置は、被試験材料に照射した光を基にして、材料の表面上の変形を測定するものです。光学的な技術を用いるため、非常に精密な測定が可能で、従来の機械式伸び計では得られない高い精度を実現します。主にレーザーやCCDカメラなどを活用し、画像処理を通じて材料の変位を測定しました。 次に、光学式伸び計の特徴について説明します。この装置の最大の利点は、非接触式であるため、試験材料に物理的に接触することなく、測定を行うことができる点です。これにより、試験中に材料に負担をかけることがなく、特に脆弱な材料や薄膜材料の試験において、その特性を正確に把握できます。また、高い時間分解能を持つため、短時間で発生する変形(例えば、動的試験や衝撃試験)にも対応できるのも大きな特長です。 この装置は様々な種類が存在しますが、主に3つのタイプに分類されます。第一に、静的測定用の光学式伸び計があります。このタイプは、材料が静止している状態での変形測定に適しています。第二に、動的測定用の光学式伸び計があり、こちらは材料が応力を受けながら変形する際の測定に特化しています。最後に、三次元測定機能を持つ光学式伸び計があります。このタイプは、被試験材料の変形を三次元的に捉えることができ、特に複雑な形状を持つ材料や構造物に対して有効です。 用途についてですが、高精度光学式伸び計は様々な分野で使用されています。主に材料科学の研究や、構造物の信頼性評価、航空宇宙、自動車、及び土木工学など多岐にわたる用途があります。例えば、新しい合金材料や複合材料の開発では、光学式伸び計を使ってその特性を詳細に評価し、製品の信頼性を向上させるためのデータを提供します。また、試験機関や大学の研究室でも、基礎研究から応用研究まで幅広く利用されています。 関連技術としては、画像処理技術やレーザー技術が挙げられます。特に、近年の画像処理技術の進展により、画像からの変位抽出がより高精度かつ迅速に行えるようになりました。不均一な変形を捉えるためのパターン認識技術や、3D視覚化によって得られたデータの解析も進化しています。また、光学式伸び計においては、測定精度を向上させるためのキャリブレーション技術や、外部要因(温度や振動)への対策としての補正技術も重要な要素となっています。 結論として、高精度光学式伸び計は、材料や構造物の変形を高精度で測定するための強力なツールです。非接触式測定の特長や多種多様な用途、関連技術の進化により、この装置は材料科学の発展や産業界における革新に大きく寄与していると言えます。これからも技術の進展とともに、より高精度で効率的な測定が可能となることが期待されます。 |
*** 免責事項 ***
https://www.globalresearch.co.jp/disclaimer/