1 エグゼクティブサマリー
1.1 市場規模 2024-2025年
1.2 市場成長 2025年(予測)-2034年(予測)
1.3 主要な需要ドライバー
1.4 主要プレイヤーと競争構造
1.5 業界のベストプラクティス
1.6 最近の動向と発展
1.7 業界見通し
2 市場概要とステークホルダーの洞察
2.1 市場動向
2.2 主要垂直市場
2.3 主要地域
2.4 供給者パワー
2.5 購買者パワー
2.6 主要市場機会とリスク
2.7 ステークホルダーによる主要イニシアチブ
3 経済概要
3.1 GDP見通し
3.2 一人当たりGDP成長率
3.3 インフレ動向
3.4 民主主義指数
3.5 公的債務総額比率
3.6 国際収支(BoP)ポジション
3.7 人口見通し
3.8 都市化動向
4 国別リスクプロファイル
4.1 国別リスク
4.2 ビジネス環境
5 世界の極低温機器市場分析
5.1 主要産業ハイライト
5.2 世界の極低温機器市場の歴史的動向(2018-2024)
5.3 世界の極低温機器市場予測(2025-2034)
5.4 機器別世界の極低温機器市場
5.4.1 タンク
5.4.1.1 過去動向(2018-2024年)
5.4.1.2 予測動向(2025-2034年)
5.4.2 ポンプ
5.4.2.1 過去動向(2018-2024年)
5.4.2.2 予測動向(2025-2034年)
5.4.3 バルブ
5.4.3.1 過去動向(2018-2024年)
5.4.3.2 予測動向(2025-2034年)
5.4.4 気化器
5.4.4.1 過去動向(2018-2024年)
5.4.4.2 予測動向(2025-2034年)
5.4.5 その他
5.5 極低温媒体別グローバル極低温機器市場
5.5.1 窒素
5.5.1.1 過去動向(2018-2024年)
5.5.1.2 予測動向(2025-2034年)
5.5.2 アルゴン
5.5.2.1 過去動向(2018-2024年)
5.5.2.2 予測動向(2025-2034年)
5.5.3 酸素
5.5.3.1 過去動向(2018-2024年)
5.5.3.2 予測動向(2025-2034)
5.5.4 LNG
5.5.4.1 過去動向(2018-2024)
5.5.4.2 予測動向(2025-2034)
5.5.5 その他
5.6 エンドユーザー別グローバル極低温機器市場
5.6.1 エネルギー・電力
5.6.1.1 過去動向(2018-2024年)
5.6.1.2 予測動向(2025-2034年)
5.6.2 化学
5.6.2.1 過去動向(2018-2024年)
5.6.2.2 予測動向(2025-2034)
5.6.3 冶金
5.6.3.1 過去動向(2018-2024)
5.6.3.2 予測動向(2025-2034)
5.6.4 エレクトロニクス
5.6.4.1 過去動向(2018-2024)
5.6.4.2 予測動向(2025-2034)
5.6.5 海運
5.6.5.1 過去動向(2018-2024)
5.6.5.2 予測動向(2025-2034)
5.6.6 その他
5.7 地域別グローバル極低温機器市場
5.7.1 北米
5.7.1.1 過去動向(2018-2024)
5.7.1.2 予測動向(2025-2034)
5.7.2 欧州
5.7.2.1 過去動向(2018-2024年)
5.7.2.2 予測動向(2025-2034年)
5.7.3 アジア太平洋地域
5.7.3.1 過去動向(2018-2024年)
5.7.3.2 予測動向(2025-2034年)
5.7.4 ラテンアメリカ
5.7.4.1 過去動向(2018-2024年)
5.7.4.2 予測動向(2025-2034年)
5.7.5 中東・アフリカ
5.7.5.1 過去動向(2018-2024年)
5.7.5.2 予測動向(2025-2034)
6 北米極低温機器市場分析
6.1 アメリカ合衆国
6.1.1 過去動向(2018-2024)
6.1.2 予測動向(2025-2034)
6.2 カナダ
6.2.1 過去動向(2018-2024年)
6.2.2 予測動向(2025-2034年)
7 欧州極低温機器市場分析
7.1 イギリス
7.1.1 過去動向(2018-2024年)
7.1.2 予測動向(2025-2034年)
7.2 ドイツ
7.2.1 過去動向(2018-2024年)
7.2.2 予測動向(2025-2034年)
7.3 フランス
7.3.1 過去動向(2018-2024年)
7.3.2 予測動向(2025-2034年)
7.4 イタリア
7.4.1 過去動向(2018-2024年)
7.4.2 予測動向(2025-2034年)
7.5 その他
8 アジア太平洋地域の極低温機器市場分析
8.1 中国
8.1.1 過去動向(2018-2024年)
8.1.2 予測動向(2025-2034年)
8.2 日本
8.2.1 過去動向(2018-2024年)
8.2.2 予測動向(2025-2034年)
8.3 インド
8.3.1 過去動向(2018-2024年)
8.3.2 予測動向(2025-2034年)
8.4 ASEAN
8.4.1 過去動向(2018-2024)
8.4.2 予測動向(2025-2034)
8.5 オーストラリア
8.5.1 過去動向(2018-2024)
8.5.2 予測動向(2025-2034)
8.6 その他
9 ラテンアメリカ極低温機器市場分析
9.1 ブラジル
9.1.1 過去動向(2018-2024年)
9.1.2 予測動向(2025-2034年)
9.2 アルゼンチン
9.2.1 過去動向(2018-2024年)
9.2.2 予測動向(2025-2034)
9.3 メキシコ
9.3.1 過去動向(2018-2024)
9.3.2 予測動向(2025-2034)
9.4 その他
10 中東・アフリカ極低温機器市場分析
10.1 サウジアラビア
10.1.1 過去動向(2018-2024年)
10.1.2 予測動向(2025-2034年)
10.2 アラブ首長国連邦
10.2.1 過去動向(2018-2024年)
10.2.2 予測動向(2025-2034年)
10.3 ナイジェリア
10.3.1 過去動向(2018-2024年)
10.3.2 予測動向(2025-2034年)
10.4 南アフリカ
10.4.1 過去動向(2018-2024年)
10.4.2 予測動向(2025-2034年)
10.5 その他
11 市場ダイナミクス
11.1 SWOT分析
11.1.1 強み
11.1.2 弱み
11.1.3 機会
11.1.4 脅威
11.2 ポーターの5つの力分析
11.2.1 供給者の交渉力
11.2.2 購買者の交渉力
11.2.3 新規参入の脅威
11.2.4 競争の激しさ
11.2.5 代替品の脅威
11.3 需要の主要指標
11.4 価格の主要指標
12 バリューチェーン分析
13 競争環境
13.1 サプライヤー選定
13.2 主要グローバルプレイヤー
13.3 主要地域プレイヤー
13.4 主要プレイヤーの戦略
13.5 企業プロファイル
13.5.1 Cryofab
13.5.1.1 会社概要
13.5.1.2 製品ポートフォリオ
13.5.1.3 顧客層と実績
13.5.1.4 認証
13.5.2 日機装クライオジェニック・インダストリーズ
13.5.2.1 会社概要
13.5.2.2 製品ポートフォリオ
13.5.2.3 市場規模と実績
13.5.2.4 認証
13.5.3 リンデ・ピーエルシー
13.5.3.1 会社概要
13.5.3.2 製品ポートフォリオ
13.5.3.3 市場規模と実績
13.5.3.4 認証
13.5.4 HEROSE GMBH
13.5.4.1 会社概要
13.5.4.2 製品ポートフォリオ
13.5.4.3 対象地域と実績
13.5.4.4 認証
13.5.5 Wessington Cryogenic Ltd.
13.5.5.1 会社概要
13.5.5.2 製品ポートフォリオ
13.5.5.3 対象地域と実績
13.5.5.4 認証
13.5.6 Sulzer Ltd.
13.5.6.1 会社概要
13.5.6.2 製品ポートフォリオ
13.5.6.3 対象地域と実績
13.5.6.4 認証
13.5.7 その他
1.1 Market Size 2024-2025
1.2 Market Growth 2025(F)-2034(F)
1.3 Key Demand Drivers
1.4 Key Players and Competitive Structure
1.5 Industry Best Practices
1.6 Recent Trends and Developments
1.7 Industry Outlook
2 Market Overview and Stakeholder Insights
2.1 Market Trends
2.2 Key Verticals
2.3 Key Regions
2.4 Supplier Power
2.5 Buyer Power
2.6 Key Market Opportunities and Risks
2.7 Key Initiatives by Stakeholders
3 Economic Summary
3.1 GDP Outlook
3.2 GDP Per Capita Growth
3.3 Inflation Trends
3.4 Democracy Index
3.5 Gross Public Debt Ratios
3.6 Balance of Payment (BoP) Position
3.7 Population Outlook
3.8 Urbanisation Trends
4 Country Risk Profiles
4.1 Country Risk
4.2 Business Climate
5 Global Cryogenic Equipment Market Analysis
5.1 Key Industry Highlights
5.2 Global Cryogenic Equipment Historical Market (2018-2024)
5.3 Global Cryogenic Equipment Market Forecast (2025-2034)
5.4 Global Cryogenic Equipment Market by Equipment
5.4.1 Tanks
5.4.1.1 Historical Trend (2018-2024)
5.4.1.2 Forecast Trend (2025-2034)
5.4.2 Pumps
5.4.2.1 Historical Trend (2018-2024)
5.4.2.2 Forecast Trend (2025-2034)
5.4.3 Valves
5.4.3.1 Historical Trend (2018-2024)
5.4.3.2 Forecast Trend (2025-2034)
5.4.4 Vaporizers
5.4.4.1 Historical Trend (2018-2024)
5.4.4.2 Forecast Trend (2025-2034)
5.4.5 Others
5.5 Global Cryogenic Equipment Market by Cryogen
5.5.1 Nitrogen
5.5.1.1 Historical Trend (2018-2024)
5.5.1.2 Forecast Trend (2025-2034)
5.5.2 Argon
5.5.2.1 Historical Trend (2018-2024)
5.5.2.2 Forecast Trend (2025-2034)
5.5.3 Oxygen
5.5.3.1 Historical Trend (2018-2024)
5.5.3.2 Forecast Trend (2025-2034)
5.5.4 LNG
5.5.4.1 Historical Trend (2018-2024)
5.5.4.2 Forecast Trend (2025-2034)
5.5.5 Others
5.6 Global Cryogenic Equipment Market by End User
5.6.1 Energy and Power
5.6.1.1 Historical Trend (2018-2024)
5.6.1.2 Forecast Trend (2025-2034)
5.6.2 Chemicals
5.6.2.1 Historical Trend (2018-2024)
5.6.2.2 Forecast Trend (2025-2034)
5.6.3 Metallurgy
5.6.3.1 Historical Trend (2018-2024)
5.6.3.2 Forecast Trend (2025-2034)
5.6.4 Electronics
5.6.4.1 Historical Trend (2018-2024)
5.6.4.2 Forecast Trend (2025-2034)
5.6.5 Shipping
5.6.5.1 Historical Trend (2018-2024)
5.6.5.2 Forecast Trend (2025-2034)
5.6.6 Others
5.7 Global Cryogenic Equipment Market by Region
5.7.1 North America
5.7.1.1 Historical Trend (2018-2024)
5.7.1.2 Forecast Trend (2025-2034)
5.7.2 Europe
5.7.2.1 Historical Trend (2018-2024)
5.7.2.2 Forecast Trend (2025-2034)
5.7.3 Asia Pacific
5.7.3.1 Historical Trend (2018-2024)
5.7.3.2 Forecast Trend (2025-2034)
5.7.4 Latin America
5.7.4.1 Historical Trend (2018-2024)
5.7.4.2 Forecast Trend (2025-2034)
5.7.5 Middle East and Africa
5.7.5.1 Historical Trend (2018-2024)
5.7.5.2 Forecast Trend (2025-2034)
6 North America Cryogenic Equipment Market Analysis
6.1 United States of America
6.1.1 Historical Trend (2018-2024)
6.1.2 Forecast Trend (2025-2034)
6.2 Canada
6.2.1 Historical Trend (2018-2024)
6.2.2 Forecast Trend (2025-2034)
7 Europe Cryogenic Equipment Market Analysis
7.1 United Kingdom
7.1.1 Historical Trend (2018-2024)
7.1.2 Forecast Trend (2025-2034)
7.2 Germany
7.2.1 Historical Trend (2018-2024)
7.2.2 Forecast Trend (2025-2034)
7.3 France
7.3.1 Historical Trend (2018-2024)
7.3.2 Forecast Trend (2025-2034)
7.4 Italy
7.4.1 Historical Trend (2018-2024)
7.4.2 Forecast Trend (2025-2034)
7.5 Others
8 Asia Pacific Cryogenic Equipment Market Analysis
8.1 China
8.1.1 Historical Trend (2018-2024)
8.1.2 Forecast Trend (2025-2034)
8.2 Japan
8.2.1 Historical Trend (2018-2024)
8.2.2 Forecast Trend (2025-2034)
8.3 India
8.3.1 Historical Trend (2018-2024)
8.3.2 Forecast Trend (2025-2034)
8.4 ASEAN
8.4.1 Historical Trend (2018-2024)
8.4.2 Forecast Trend (2025-2034)
8.5 Australia
8.5.1 Historical Trend (2018-2024)
8.5.2 Forecast Trend (2025-2034)
8.6 Others
9 Latin America Cryogenic Equipment Market Analysis
9.1 Brazil
9.1.1 Historical Trend (2018-2024)
9.1.2 Forecast Trend (2025-2034)
9.2 Argentina
9.2.1 Historical Trend (2018-2024)
9.2.2 Forecast Trend (2025-2034)
9.3 Mexico
9.3.1 Historical Trend (2018-2024)
9.3.2 Forecast Trend (2025-2034)
9.4 Others
10 Middle East and Africa Cryogenic Equipment Market Analysis
10.1 Saudi Arabia
10.1.1 Historical Trend (2018-2024)
10.1.2 Forecast Trend (2025-2034)
10.2 United Arab Emirates
10.2.1 Historical Trend (2018-2024)
10.2.2 Forecast Trend (2025-2034)
10.3 Nigeria
10.3.1 Historical Trend (2018-2024)
10.3.2 Forecast Trend (2025-2034)
10.4 South Africa
10.4.1 Historical Trend (2018-2024)
10.4.2 Forecast Trend (2025-2034)
10.5 Others
11 Market Dynamics
11.1 SWOT Analysis
11.1.1 Strengths
11.1.2 Weaknesses
11.1.3 Opportunities
11.1.4 Threats
11.2 Porter’s Five Forces Analysis
11.2.1 Supplier’s Power
11.2.2 Buyer’s Power
11.2.3 Threat of New Entrants
11.2.4 Degree of Rivalry
11.2.5 Threat of Substitutes
11.3 Key Indicators for Demand
11.4 Key Indicators for Price
12 Value Chain Analysis
13 Competitive Landscape
13.1 Supplier Selection
13.2 Key Global Players
13.3 Key Regional Players
13.4 Key Player Strategies
13.5 Company Profiles
13.5.1 Cryofab
13.5.1.1 Company Overview
13.5.1.2 Product Portfolio
13.5.1.3 Demographic Reach and Achievements
13.5.1.4 Certifications
13.5.2 Nikkiso Cryogenic Industries
13.5.2.1 Company Overview
13.5.2.2 Product Portfolio
13.5.2.3 Demographic Reach and Achievements
13.5.2.4 Certifications
13.5.3 Linde plc
13.5.3.1 Company Overview
13.5.3.2 Product Portfolio
13.5.3.3 Demographic Reach and Achievements
13.5.3.4 Certifications
13.5.4 HEROSE GMBH
13.5.4.1 Company Overview
13.5.4.2 Product Portfolio
13.5.4.3 Demographic Reach and Achievements
13.5.4.4 Certifications
13.5.5 Wessington Cryogenic Ltd.
13.5.5.1 Company Overview
13.5.5.2 Product Portfolio
13.5.5.3 Demographic Reach and Achievements
13.5.5.4 Certifications
13.5.6 Sulzer Ltd.
13.5.6.1 Company Overview
13.5.6.2 Product Portfolio
13.5.6.3 Demographic Reach and Achievements
13.5.6.4 Certifications
13.5.7 Others
| ※参考情報 極低温機器とは、温度が摂氏-150度以下、または絶対零度に近い温度で動作する装置や機器のことを指します。これらの機器は、極端な低温条件下でも機能し、物質の性質や行動を研究するために活用されます。極低温技術は、物理学、化学、生物学などの多くの科学分野において重要な役割を果たしています。 極低温機器の種類には、冷却機器、測定機器、試料保持機器などがあります。冷却機器としては、ヘリウム冷凍機やネオン冷却器、冷却ブロックなどがあり、これらは低温を生成するための装置です。例えば、ヘリウム冷凍機は、ヘリウムの膨張を利用して冷却を行います。これにより、非常に低い温度を達成できるため、様々な研究や実験に用いられます。 また、測定機器には、低温下での物質の性質を評価するための測定装置があります。例えば、低温用の磁気秤や抵抗温度計、熱伝導測定器などがあり、これらは極低温環境で材料特性を評価するために使用されます。さらに、試料保持機器には、低温で試料を保持するデバイスがあり、これにより長期間にわたって安定した低温環境を維持することが可能です。 極低温機器の用途は多岐にわたります。物理学においては、超伝導現象の研究や量子物理学の実験に利用され、特に超伝導体の挙動や特性を理解するために重要です。また、化学の分野では、低温環境下での化学反応の研究や新しい材料の合成に使われることがあります。生物学では、低温保存技術が細胞や組織の保存に役立ち、特に生殖医療や幹細胞研究において重要な役割を果たしています。 関連技術としては、冷却技術、真空技術、低温測定技術などが挙げられます。冷却技術では、冷媒の選択や冷却プロセスの最適化が求められ、ヘリウムや窒素などの冷媒が用いられます。真空技術は、低温環境を維持するために重要で、真空槽を利用して熱伝導や対流を防ぎ、試料の安定性を保つ役割を果たします。 さらに、低温測定技術は、極低温での測定精度を高めるために、最新の電子回路やデジタル技術を用います。これにより、微弱な信号を高精度で計測することが可能になっています。 極低温機器に関連する研究は、近年ますます注目を集めています。特に、量子コンピュータの開発や、超伝導体の応用が進む中で、極低温技術は今後も重要な役割を担うと考えられています。また、宇宙航空分野においても、極低温環境での材料試験や装置の運用が期待されています。これにより、極低温機器は今後の科学技術の進展に寄与するものと見込まれています。 このように、極低温機器は、科学の最前線で多様な分野において重要な役割を果たしています。さらに、技術の進化に伴い、新しい極低温機器の開発や応用が進むことで、我々の理解が深まり、さらなる技術革新が期待されています。極低温技術は、今後も様々な革新を導く原動力となることでしょう。 |
*** 免責事項 ***
https://www.globalresearch.co.jp/disclaimer/

