1 エグゼクティブサマリー
1.1 市場規模 2024-2025年
1.2 市場成長 2025年(予測)-2034年(予測)
1.3 主要な需要ドライバー
1.4 主要プレイヤーと競争構造
1.5 業界のベストプラクティス
1.6 最近の動向と発展
1.7 業界見通し
2 市場概要とステークホルダーの洞察
2.1 市場動向
2.2 主要垂直市場
2.3 主要地域
2.4 供給者パワー
2.5 購買者パワー
2.6 主要市場機会とリスク
2.7 ステークホルダーによる主要イニシアチブ
3 経済概要
3.1 GDP見通し
3.2 一人当たりGDP成長率
3.3 インフレ動向
3.4 民主主義指数
3.5 公的債務総額比率
3.6 国際収支(BoP)ポジション
3.7 人口見通し
3.8 都市化動向
4 国別リスクプロファイル
4.1 国別リスク
4.2 ビジネス環境
5 世界の廃棄物エネルギー化(WTE)市場分析
5.1 主要産業ハイライト
5.2 世界の廃棄物エネルギー化(WTE)市場の歴史的推移(2018-2024年)
5.3 世界の廃棄物エネルギー化(WTE)市場予測(2025-2034)
5.4 プロセス別世界の廃棄物エネルギー化(WTE)市場
5.4.1 焼却処理
5.4.1.1 市場シェア
5.4.1.2 過去動向(2018-2024)
5.4.1.3 予測動向(2025-2034)
5.4.2 ガス化
5.4.2.1 市場シェア
5.4.2.2 過去動向(2018-2024)
5.4.2.3 予測動向(2025-2034)
5.4.3 生物学的処理
5.4.3.1 市場シェア
5.4.3.2 過去動向(2018-2024)
5.4.3.3 予測動向(2025-2034)
5.4.4 熱分解
5.4.4.1 市場シェア
5.4.4.2 過去動向(2018-2024年)
5.4.4.3 予測動向(2025-2034年)
5.4.5 その他
5.5 廃棄物エネルギー化(WTE)市場:原料別
5.5.1 MSW(一般廃棄物)
5.5.1.1 市場シェア
5.5.1.2 過去動向(2018-2024年)
5.5.1.3 予測動向(2025-2034年)
5.5.2 農業廃棄物
5.5.2.1 市場シェア
5.5.2.2 過去動向(2018-2024年)
5.5.2.3 予測動向(2025-2034)
5.5.3 医療廃棄物
5.5.3.1 市場シェア
5.5.3.2 過去動向(2018-2024)
5.5.3.3 予測動向(2025-2034)
5.5.4 その他
5.6 技術別グローバル廃棄物エネルギー化(WTE)市場
5.6.1 流動層
5.6.1.1 市場シェア
5.6.1.2 過去動向(2018-2024)
5.6.1.3 予測動向(2025-2034)
5.6.2 ロータリーキルン
5.6.2.1 市場シェア
5.6.2.2 過去動向(2018-2024年)
5.6.2.3 予測動向(2025-2034年)
5.6.3 その他
5.7 用途別グローバル廃棄物エネルギー化(WTE)市場
5.7.1 暖房
5.7.1.1 市場シェア
5.7.1.2 過去動向 (2018-2024)
5.7.1.3 予測動向 (2025-2034)
5.7.2 発電
5.7.2.1 市場シェア
5.7.2.2 過去動向 (2018-2024)
5.7.2.3 予測動向 (2025-2034)
5.7.3 熱電併給
5.7.3.1 市場シェア
5.7.3.2 過去動向 (2018-2024)
5.7.3.3 予測動向 (2025-2034)
5.7.4 輸送
5.7.4.1 市場シェア
5.7.4.2 過去動向(2018-2024年)
5.7.4.3 予測動向(2025-2034年)
5.8 地域別グローバル廃棄物エネルギー化(WTE)市場
5.8.1 北米
5.8.1.1 市場シェア
5.8.1.2 過去動向(2018-2024年)
5.8.1.3 予測動向(2025-2034)
5.8.2 欧州
5.8.2.1 市場シェア
5.8.2.2 過去動向(2018-2024)
5.8.2.3 予測動向(2025-2034)
5.8.3 アジア太平洋
5.8.3.1 市場シェア
5.8.3.2 過去動向(2018-2024年)
5.8.3.3 予測動向(2025-2034年)
5.8.4 ラテンアメリカ
5.8.4.1 市場シェア
5.8.4.2 過去動向(2018-2024年)
5.8.4.3 予測動向(2025-2034)
5.8.5 中東・アフリカ
5.8.5.1 市場シェア
5.8.5.2 過去動向(2018-2024)
5.8.5.3 予測動向(2025-2034)
6 北米廃棄物エネルギー化(WTE)市場分析
6.1 アメリカ合衆国
6.1.1 市場シェア
6.1.2 過去動向(2018-2024)
6.1.3 予測動向(2025-2034)
6.2 カナダ
6.2.1 市場シェア
6.2.2 過去動向(2018-2024年)
6.2.3 予測動向(2025-2034年)
7 欧州廃棄物エネルギー化(WTE)市場分析
7.1 イギリス
7.1.1 市場シェア
7.1.2 過去動向(2018-2024年)
7.1.3 予測動向(2025-2034)
7.2 ドイツ
7.2.1 市場シェア
7.2.2 過去動向(2018-2024)
7.2.3 予測動向(2025-2034)
7.3 フランス
7.3.1 市場シェア
7.3.2 過去動向(2018-2024年)
7.3.3 予測動向(2025-2034年)
7.4 イタリア
7.4.1 市場シェア
7.4.2 過去動向(2018-2024年)
7.4.3 予測動向(2025-2034年)
7.5 オランダ
7.5.1 市場シェア
7.5.2 過去動向(2018-2024年)
7.5.3 予測動向(2025-2034年)
7.6 その他
8 アジア太平洋地域 廃棄物エネルギー化(WTE)市場分析
8.1 中国
8.1.1 市場シェア
8.1.2 過去動向(2018-2024年)
8.1.3 予測動向(2025-2034年)
8.2 日本
8.2.1 市場シェア
8.2.2 過去動向(2018-2024年)
8.2.3 予測動向(2025-2034年)
8.3 インド
8.3.1 市場シェア
8.3.2 過去動向(2018-2024)
8.3.3 予測動向(2025-2034)
8.4 韓国
8.4.1 市場シェア
8.4.2 過去動向(2018-2024)
8.4.3 予測動向 (2025-2034)
8.5 ASEAN
8.5.1 市場シェア
8.5.2 過去動向 (2018-2024)
8.5.3 予測動向 (2025-2034)
8.6 その他
9 ラテンアメリカ 廃棄物エネルギー化 (WTE) 市場分析
9.1 ブラジル
9.1.1 市場シェア
9.1.2 過去動向 (2018-2024)
9.1.3 予測動向 (2025-2034)
9.2 メキシコ
9.2.1 市場シェア
9.2.2 過去動向 (2018-2024)
9.2.3 予測動向(2025-2034)
9.3 その他
10 中東・アフリカ廃棄物エネルギー化(WTE)市場分析
10.1 サウジアラビア
10.1.1 市場シェア
10.1.2 過去動向(2018-2024)
10.1.3 予測動向(2025-2034)
10.2 アラブ首長国連邦
10.2.1 市場シェア
10.2.2 過去動向(2018-2024年)
10.2.3 予測動向(2025-2034年)
10.3 南アフリカ
10.3.1 市場シェア
10.3.2 過去動向(2018-2024年)
10.3.3 予測動向(2025-2034)
10.4 その他
11 市場ダイナミクス
11.1 SWOT分析
11.1.1 強み
11.1.2 弱み
11.1.3 機会
11.1.4 脅威
11.2 ポーターの5つの力分析
11.2.1 供給者の交渉力
11.2.2 購入者の交渉力
11.2.3 新規参入の脅威
11.2.4 競合の激しさ
11.2.5 代替品の脅威
11.3 需要の主要指標
11.4 価格の主要指標
12 競争環境
12.1 供給業者の選定
12.2 主要グローバル企業
12.3 主要地域企業
12.4 主要企業の戦略
12.5 企業プロファイル
12.5.1 ヴェオリアS.A.
12.5.1.1 会社概要
12.5.1.2 製品ポートフォリオ
12.5.1.3 対象地域と実績
12.5.1.4 認証
12.5.2 スエズ社(Suez S.A.)
12.5.2.1 会社概要
12.5.2.2 製品ポートフォリオ
12.5.2.3 対象地域と実績
12.5.2.4 認証
12.5.3 日立造船イノバAG(Hitachi Zosen Inova AG)
12.5.3.1 会社概要
12.5.3.2 製品ポートフォリオ
12.5.3.3 人口統計学的リーチと実績
12.5.3.4 認証
12.5.4 ケッペル・セガーズ
12.5.4.1 会社概要
12.5.4.2 製品ポートフォリオ
12.5.4.3 人口統計学的リーチと実績
12.5.4.4 認証
12.5.5 マーティン社
12.5.5.1 会社概要
12.5.5.2 製品ポートフォリオ
12.5.5.3 顧客層および実績
12.5.5.4 認証
12.5.6 中国光大環境集団有限公司
12.5.6.1 会社概要
12.5.6.2 製品ポートフォリオ
12.5.6.3 顧客層と実績
12.5.6.4 認証
12.5.7 Jansen Combustion and Boiler
12.5.7.1 会社概要
12.5.7.2 製品ポートフォリオ
12.5.7.3 顧客層と実績
12.5.7.4 認証
12.5.8 グランドブルー環境株式会社
12.5.8.1 会社概要
12.5.8.2 製品ポートフォリオ
12.5.8.3 対象地域と実績
12.5.8.4 認証
12.5.9 アテロ
12.5.9.1 会社概要
12.5.9.2 製品ポートフォリオ
12.5.9.3 対象地域と実績
12.5.9.4 認証
12.5.10 コバンタ・ホールディング・コーポレーション
12.5.10.1 会社概要
12.5.10.2 製品ポートフォリオ
12.5.10.3 対象地域と実績
12.5.10.4 認証
12.5.11 その他
1.1 Market Size 2024-2025
1.2 Market Growth 2025(F)-2034(F)
1.3 Key Demand Drivers
1.4 Key Players and Competitive Structure
1.5 Industry Best Practices
1.6 Recent Trends and Developments
1.7 Industry Outlook
2 Market Overview and Stakeholder Insights
2.1 Market Trends
2.2 Key Verticals
2.3 Key Regions
2.4 Supplier Power
2.5 Buyer Power
2.6 Key Market Opportunities and Risks
2.7 Key Initiatives by Stakeholders
3 Economic Summary
3.1 GDP Outlook
3.2 GDP Per Capita Growth
3.3 Inflation Trends
3.4 Democracy Index
3.5 Gross Public Debt Ratios
3.6 Balance of Payment (BoP) Position
3.7 Population Outlook
3.8 Urbanisation Trends
4 Country Risk Profiles
4.1 Country Risk
4.2 Business Climate
5 Global Waste to Energy (WTE) Market Analysis
5.1 Key Industry Highlights
5.2 Global Waste to Energy (WTE) Historical Market (2018-2024)
5.3 Global Waste to Energy (WTE) Market Forecast (2025-2034)
5.4 Global Waste to Energy (WTE) Market by Process
5.4.1 Incineration
5.4.1.1 Market Share
5.4.1.2 Historical Trend (2018-2024)
5.4.1.3 Forecast Trend (2025-2034)
5.4.2 Gasification
5.4.2.1 Market Share
5.4.2.2 Historical Trend (2018-2024)
5.4.2.3 Forecast Trend (2025-2034)
5.4.3 Biological
5.4.3.1 Market Share
5.4.3.2 Historical Trend (2018-2024)
5.4.3.3 Forecast Trend (2025-2034)
5.4.4 Pyrolysis
5.4.4.1 Market Share
5.4.4.2 Historical Trend (2018-2024)
5.4.4.3 Forecast Trend (2025-2034)
5.4.5 Others
5.5 Global Waste to Energy (WTE) Market by Source
5.5.1 MSW (Municipal Solid Waste)
5.5.1.1 Market Share
5.5.1.2 Historical Trend (2018-2024)
5.5.1.3 Forecast Trend (2025-2034)
5.5.2 Agriculture Waste
5.5.2.1 Market Share
5.5.2.2 Historical Trend (2018-2024)
5.5.2.3 Forecast Trend (2025-2034)
5.5.3 Medical Waste
5.5.3.1 Market Share
5.5.3.2 Historical Trend (2018-2024)
5.5.3.3 Forecast Trend (2025-2034)
5.5.4 Others
5.6 Global Waste to Energy (WTE) Market by Technology
5.6.1 Fluidized Bed
5.6.1.1 Market Share
5.6.1.2 Historical Trend (2018-2024)
5.6.1.3 Forecast Trend (2025-2034)
5.6.2 Rotary Kiln
5.6.2.1 Market Share
5.6.2.2 Historical Trend (2018-2024)
5.6.2.3 Forecast Trend (2025-2034)
5.6.3 Others
5.7 Global Waste to Energy (WTE) Market by Application
5.7.1 Heating
5.7.1.1 Market Share
5.7.1.2 Historical Trend (2018-2024)
5.7.1.3 Forecast Trend (2025-2034)
5.7.2 Power Generation
5.7.2.1 Market Share
5.7.2.2 Historical Trend (2018-2024)
5.7.2.3 Forecast Trend (2025-2034)
5.7.3 Combined Heat & Power
5.7.3.1 Market Share
5.7.3.2 Historical Trend (2018-2024)
5.7.3.3 Forecast Trend (2025-2034)
5.7.4 Transport
5.7.4.1 Market Share
5.7.4.2 Historical Trend (2018-2024)
5.7.4.3 Forecast Trend (2025-2034)
5.8 Global Waste to Energy (WTE) Market by Region
5.8.1 North America
5.8.1.1 Market Share
5.8.1.2 Historical Trend (2018-2024)
5.8.1.3 Forecast Trend (2025-2034)
5.8.2 Europe
5.8.2.1 Market Share
5.8.2.2 Historical Trend (2018-2024)
5.8.2.3 Forecast Trend (2025-2034)
5.8.3 Asia Pacific
5.8.3.1 Market Share
5.8.3.2 Historical Trend (2018-2024)
5.8.3.3 Forecast Trend (2025-2034)
5.8.4 Latin America
5.8.4.1 Market Share
5.8.4.2 Historical Trend (2018-2024)
5.8.4.3 Forecast Trend (2025-2034)
5.8.5 Middle East and Africa
5.8.5.1 Market Share
5.8.5.2 Historical Trend (2018-2024)
5.8.5.3 Forecast Trend (2025-2034)
6 North America Waste to Energy (WTE) Market Analysis
6.1 United States of America
6.1.1 Market Share
6.1.2 Historical Trend (2018-2024)
6.1.3 Forecast Trend (2025-2034)
6.2 Canada
6.2.1 Market Share
6.2.2 Historical Trend (2018-2024)
6.2.3 Forecast Trend (2025-2034)
7 Europe Waste to Energy (WTE) Market Analysis
7.1 United Kingdom
7.1.1 Market Share
7.1.2 Historical Trend (2018-2024)
7.1.3 Forecast Trend (2025-2034)
7.2 Germany
7.2.1 Market Share
7.2.2 Historical Trend (2018-2024)
7.2.3 Forecast Trend (2025-2034)
7.3 France
7.3.1 Market Share
7.3.2 Historical Trend (2018-2024)
7.3.3 Forecast Trend (2025-2034)
7.4 Italy
7.4.1 Market Share
7.4.2 Historical Trend (2018-2024)
7.4.3 Forecast Trend (2025-2034)
7.5 Netherlands
7.5.1 Market Share
7.5.2 Historical Trend (2018-2024)
7.5.3 Forecast Trend (2025-2034)
7.6 Others
8 Asia Pacific Waste to Energy (WTE) Market Analysis
8.1 China
8.1.1 Market Share
8.1.2 Historical Trend (2018-2024)
8.1.3 Forecast Trend (2025-2034)
8.2 Japan
8.2.1 Market Share
8.2.2 Historical Trend (2018-2024)
8.2.3 Forecast Trend (2025-2034)
8.3 India
8.3.1 Market Share
8.3.2 Historical Trend (2018-2024)
8.3.3 Forecast Trend (2025-2034)
8.4 South Korea
8.4.1 Market Share
8.4.2 Historical Trend (2018-2024)
8.4.3 Forecast Trend (2025-2034)
8.5 ASEAN
8.5.1 Market Share
8.5.2 Historical Trend (2018-2024)
8.5.3 Forecast Trend (2025-2034)
8.6 Others
9 Latin America Waste to Energy (WTE) Market Analysis
9.1 Brazil
9.1.1 Market Share
9.1.2 Historical Trend (2018-2024)
9.1.3 Forecast Trend (2025-2034)
9.2 Mexico
9.2.1 Market Share
9.2.2 Historical Trend (2018-2024)
9.2.3 Forecast Trend (2025-2034)
9.3 Others
10 Middle East and Africa Waste to Energy (WTE) Market Analysis
10.1 Saudi Arabia
10.1.1 Market Share
10.1.2 Historical Trend (2018-2024)
10.1.3 Forecast Trend (2025-2034)
10.2 United Arab Emirates
10.2.1 Market Share
10.2.2 Historical Trend (2018-2024)
10.2.3 Forecast Trend (2025-2034)
10.3 South Africa
10.3.1 Market Share
10.3.2 Historical Trend (2018-2024)
10.3.3 Forecast Trend (2025-2034)
10.4 Others
11 Market Dynamics
11.1 SWOT Analysis
11.1.1 Strengths
11.1.2 Weaknesses
11.1.3 Opportunities
11.1.4 Threats
11.2 Porter’s Five Forces Analysis
11.2.1 Supplier’s Power
11.2.2 Buyer’s Power
11.2.3 Threat of New Entrants
11.2.4 Degree of Rivalry
11.2.5 Threat of Substitutes
11.3 Key Indicators for Demand
11.4 Key Indicators for Price
12 Competitive Landscape
12.1 Supplier Selection
12.2 Key Global Players
12.3 Key Regional Players
12.4 Key Player Strategies
12.5 Company Profiles
12.5.1 Veolia S.A.
12.5.1.1 Company Overview
12.5.1.2 Product Portfolio
12.5.1.3 Demographic Reach and Achievements
12.5.1.4 Certifications
12.5.2 Suez S.A.
12.5.2.1 Company Overview
12.5.2.2 Product Portfolio
12.5.2.3 Demographic Reach and Achievements
12.5.2.4 Certifications
12.5.3 Hitachi Zosen Inova AG
12.5.3.1 Company Overview
12.5.3.2 Product Portfolio
12.5.3.3 Demographic Reach and Achievements
12.5.3.4 Certifications
12.5.4 Keppel Seghers
12.5.4.1 Company Overview
12.5.4.2 Product Portfolio
12.5.4.3 Demographic Reach and Achievements
12.5.4.4 Certifications
12.5.5 Martin GmbH
12.5.5.1 Company Overview
12.5.5.2 Product Portfolio
12.5.5.3 Demographic Reach and Achievements
12.5.5.4 Certifications
12.5.6 China Everbright Environment Group Ltd
12.5.6.1 Company Overview
12.5.6.2 Product Portfolio
12.5.6.3 Demographic Reach and Achievements
12.5.6.4 Certifications
12.5.7 Jansen Combustion and Boiler
12.5.7.1 Company Overview
12.5.7.2 Product Portfolio
12.5.7.3 Demographic Reach and Achievements
12.5.7.4 Certifications
12.5.8 Grandblue Environment Co Ltd
12.5.8.1 Company Overview
12.5.8.2 Product Portfolio
12.5.8.3 Demographic Reach and Achievements
12.5.8.4 Certifications
12.5.9 Attero
12.5.9.1 Company Overview
12.5.9.2 Product Portfolio
12.5.9.3 Demographic Reach and Achievements
12.5.9.4 Certifications
12.5.10 Covanta Holding Corporation
12.5.10.1 Company Overview
12.5.10.2 Product Portfolio
12.5.10.3 Demographic Reach and Achievements
12.5.10.4 Certifications
12.5.11 Others
| ※参考情報 廃棄物エネルギー化(WTE)は、廃棄物をエネルギー源として利用するプロセスを指します。具体的には、廃棄物の焼却、発酵、ガス化などの技術を用いて、廃棄物から電力、熱、バイオガスなどのエネルギーを生成します。この概念は、環境保護とエネルギー資源の確保を両立させるために重要視されています。 廃棄物エネルギー化には、主に二つのアプローチがあります。一つは、廃棄物を高温で焼却して発生する熱を利用し、蒸気を生成してタービンを回し、電力を生産する方法です。この手法は、焼却プラントで広く採用されています。もう一つのアプローチは、バイオマスや有機廃棄物を anaerobic decomposition、つまり嫌気性消化によって分解し、メタンなどのバイオガスを生成する方法です。このバイオガスは、エネルギー源として活用されるだけでなく、燃料電池などで電力に変換されることもあります。 WTE技術の種類は多岐にわたります。焼却に基づくものとしては、従来型焼却炉や流動層焼却炉があります。流動層焼却炉は、廃棄物が流動する技術を用いて効率的な燃焼を実現します。また、ガス化技術もあり、これは有機物を高温で加熱してガス状に変換し、そのガスをエネルギーとして利用するものです。。この方法は、廃棄物の処理におけるダイオキシンなどの有害物質の生成を低減する利点があります。加えて、ピロリシスという熱分解技術も存在し、廃棄物を酸素のない環境で加熱し、固体、液体、ガスの三種類の生成物を得る方法です。これにより、廃棄物から石油代替品などを得ることができます。 廃棄物エネルギー化の用途は多岐にわたります。生成された電力は、地域の電力グリッドに送電されることで、一般家庭や企業に供給されるだけでなく、工場や公共施設の熱供給に利用されます。また、バイオガスは、燃料として車両や機器に使用されることもあり、再生可能エネルギーとしての役割を果たします。特に、農業や食品産業から発生する有機廃棄物を活用することで、地域の廃棄物管理とエネルギー生産が結びついた循環型社会の構築に寄与します。 WTEの関連技術には、廃棄物の前処理技術も含まれます。例えば、廃棄物を分別収集するシステムやコンポスト化技術がこれにあたります。これらの技術により、有機物やリサイクル可能な素材を選別し、効率的なエネルギー化が可能になります。また、センサー技術やデータ分析を活用したスマート廃棄物管理システムも登場しており、廃棄物の量や種類をリアルタイムで把握することができ、より効率的な廃棄物処理が実現されています。 とはいえ、廃棄物エネルギー化には課題もあります。焼却による有害物質の排出や、技術の初期投資が高額なため、導入には慎重な検討が必要です。しかし、技術の進化により、これらの問題も徐々に解決されつつあり、持続可能なエネルギー源としての期待が高まっています。廃棄物エネルギー化は、廃棄物の減少とエネルギーの生産を両立させる重要な役割を担っており、今後の発展が期待されています。全体として、廃棄物エネルギー化は、環境負荷の低減や持続可能な社会の実現に貢献するための重要な手段であると言えるでしょう。 |
*** 免責事項 ***
https://www.globalresearch.co.jp/disclaimer/

